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A Self-Averaging “Order Parameter” for the
Sherrington-Kirkpatrick Spin Glass Model
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Following an idea of van Enter and Griffiths, we define a self-averaging param-
eter for the Sherrington-Kirkpatrick (SK) spin glass which is a self-averaging
version of the order parameter introduced by Aizenman, Lebowitz and Ruelle.
It is strictly positive at low temperature and zero at sufficiently high tempera-
ture. The proof is based on the recent construction of the thermodynamic limit
of the free energy by Guerra and Toninelli. We also discuss how our definition
compares with various existing definitions of order-parameter like quantities.

KEY WORDS: Spin glass model; thermodynamic limit; self-averaging para-
meter.

1. INTRODUCTION

The Sherrington-Kirkpatrick (SK) model is a model of disordered spin
system in which a spin variable taking on the values σi =±1 is assigned to
each lattice site i =1,2, . . . ,N . The Hamiltonian of the model in an exter-
nal field h is given by

HN({J })=− 1√
N

∑
1 � i<j �N

Jijσiσj −h

N∑
i=1

σi, (1.1)

where the Jij , for 1� i <j �N , are independent identically distributed
random variables with mean zero. The distributions dealt with in this
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paper are the discrete one, with

p(dJij )= 1
2

(
δ
(
Jij −J

)+ δ
(
Jij +J

))
dJij , (1.2)

and the Gaussian one, with

p(dJij )= 1

J
√

2π
e
− J2

ij

2J2 dJij . (1.3)

For a particular configuration of the random variables {Jij }1 � i,j �N the
corresponding free-energy per site associated with the Hamiltonian (1.1) is
defined by

fN({J })=−β−1

N
ln ZN({J }). (1.4)

where ZN({J }) is the partition function of the model, given by

ZN({J })=
∑
σ1

· · ·
∑
σN

e−βHN({J }) =Tr e−βHN({J }), (1.5)

and the trace means the sum over all 2N possible spin configurations.
As usual, we also define the quenched average of a thermodynamic

quantity to be the average with respect to the random variables {Jij },
which will always be denoted by 〈〈·〉〉. The quenched average of the free-
energy associated with the Hamiltonian (1.1) is given by

f c
N =−β−1

N
〈〈ln ZN 〉〉. (1.6)

It has been proved by Guerra and Toninelli(1) that the thermodynamic
limit

lim
N→∞

f c
N({J }) (1.7)

of the quenched free energy exists almost everywhere with respect to the
random variables {Jij }, and that

lim
N→∞

−β−1

N
ln ZN({J })= lim

N→∞
−β−1

N
〈〈ln ZN({J })〉〉. (1.8)

This equality is the crucial and physically indispensable self-averaging
property of the free energy. Aizenman, Lebowitz and Ruelle(6) have also
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proved that for the Hamiltonian (1.1) in zero external field and for β < 1
the equality

lim
N→∞

−β−1

N
ln〈〈ZN({J })〉〉= lim

N→∞
−β−1

N
〈〈ln ZN({J })〉〉, (1.9)

is equivalent to the vanishing of the mean value of the order parameter

qN({βJ })= 2
N(N −1)

∑
1 � i<j �N

〈σiσj 〉2 (1.10)

as N →∞, where

〈σiσj 〉= 1
ZN({J })

∑
{σ }

σiσj exp


 β√

N

∑
1 � i<j �N

Jijσiσj


. (1.11)

In this paper we introduce a parameter different from the one which is
suitable for high temperature considered by Guerra and Toninelli in(2)

and Toninelli in.(3) It is inspired by the work of van Enter and Grif-
fiths(12) and the recent theory of the thermodynamic limit due to Guerra
and Toninelli.(1) One main point is that – if the equilibrium theory of
the SK model is taken seriously, the order parameter must be self-averag-
ing.(4) It is not clear that the Parisi overlap distributions, which have now
been proved to describe the properties of the SK model after the work by
Guerra and Guerra and Toninelli, are related to our parameter. Thus, we
do not call it an order parameter; hence the quotation marks in our title
which should emphasize that different sensible definitions are possible. On
the other hand, unlike the (short-range) Edwards-Anderson model,(5) some
important results are known for the SK model at low temperature: the
Aizenman-Lebowitz-Ruelle (ALR) inequality (see(6) and Appendix B), the
very important recent work by Talagrand(7) (see also,(8) where a proof of
the Parisi solution has been announced), and the theory of the thermody-
namic limit at the level of states.(9) Thus our parameter is a self-averaging
version of the one devised by ALR in.(6) The self-averaging property is
related to the existence of the thermodynamic limit, which was not con-
trolled in.(6) This parameter is strictly positive at low temperatures and
zero at high temperature under a standard assumption. This is proved in
Section III. In Section IV we present another interpretation of the given
parameter and conclude with some conjectures. In Appendix A we quote,
for the reader’s convenience, the result of (11) which is used in the text. In
Appendix B we present, also for the reader’s convenience, a proof of the
ALR inequality.
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A recent review where the role of self-averaging arguments is dis-
cussed is the one by C. M. Newman and D. L. Stein.(10) Note that our
parameter is different from the important Pastur-Scherbina parameter,(20)

proved to be non self-averaging.

2. THE TWO-REPLICA HAMILTONIAN

Combining an idea of van Enter and Griffiths(12) with the order
parameter (1.10), we are led to define the two-replica Hamiltonian

HN(λ, {J }) = H
(1)
N ({J })+H(2)({J })

+ 2λ

N −1

∑
1 � i<j �N

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j , (2.12)

where

H
(k)
N ({J })=− 1√

N

∑
1 � i<j �N

Jij ·σ (k)
i σ

(k)
j (2.13)

for k=1,2. The corresponding partition function and free energy are given
by

ZN(λ, {J })=
∑

{σ (1)
i ,σ

(2)
i }

e−βHN(λ,{J }) =Tr e−βHN(λ,{J }) (2.14)

and

fN(λ, {J })=−β−1

2N
· ln ZN(λ, {J }). (2.15)

As a function of λ, the free-energy is a concave function (convex upwards
in the terminology of reference(13)). This follows from the fact that the sec-
ond derivative of (2.15) is given by

d2fN(λ, {J })
dλ2

=− β

2N
〈(A−〈A〉)2〉 (2.16)

for

A= 2
N −1

∑
1 � i<j �N

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j , (2.17)

and (2.16) is always negative.
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To prove that the limit (1.7) exists, Guerra and Toninelli employ
a very nice integration by parts technique. By a generalization due to
Guerra and Toninelli(11) it can be shown that

lim
N→∞

fN(λ, {J }),∀λ∈R (2.18)

exists and is self-averaging, that is, has almost everywhere the same value.

Remark 2.1. For λ>0, the proof of the generalization is quite sim-
ple: it suffices to interpolate linearly for the term (2.16), in addition to the
square root interpolation of the random term in (1.1) used in reference.(1)

For λ < 0, however, which is crucially needed in the main text, we must
rely on the general result of,(11) which requires a somewhat more elaborate
method. See Appendix A.

The proof of (2.18) requires that {Jij } satisfy some mild conditions.
Under these conditions,

f (λ, {J })= lim
N→∞

fN(λ, {J }) (2.19)

and

f (λ, {J })=〈〈f (λ, {J })〉〉= lim
N→∞

〈〈fN(λ, {J })〉〉 (2.20)

almost everywhere. Since f is concave as a function of λ, as a pointwise
limit of concave functions, we have that, for h>0,

fN(λ+h, {J })−fN(λ, {J })
h

�f
′
N(λ, {J }) (2.21)

and

fN(λ, {J })−fN(λ−h, {J })
h

�f
′
N(λ, {J }). (2.22)

On taking the thermodynamic limit and then the limit h → 0 from the
right on both sides of (2.21) we obtain, by Griffiths’s lemma,(13,14),

f
′
+(λ, {J }) = lim

h→0

f (λ+h, {J })−f (λ, {J })
h

� lim inf
N→∞

f
′
N(λ, {J }). (2.23)
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The same reasoning, applied to the inequality (2.22), now taking h → 0
from the left, yields

f
′
−(λ, {J }) = lim

h→0

f (λ, {J })−f (λ−h, {J })
h

� lim sup
N→∞

f
′
N(λ, {J }). (2.24)

Note that the derivatives of f with respect to λ from the right and
left exist everywhere. It then follows from (2.23) and (2.24) that

f
′
+ (λ, {J }) � lim inf

N→∞
f

′
N (λ, {J })

� lim sup
N→∞

f
′
N (λ, {J }) �f

′
− (λ, {J }) . (2.25)

Note that

dfN(λ, {J })
dλ

= 1
N(N −1)

1
ZN(λ, {J })

×
∑

1 � i<j �N

∑
{σ (1),σ (2)}

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j e−βHN(λ,{J }), (2.26)

and this derivative, when evaluated at λ=0, yields

dfN(0, {J })
dλ

= 1
N(N −1)

∑
1 � i<j �N

×



∑

{σ (1)} σ
(1)
i σ

(1)
j · e

β√
N

∑
1 � i<j �N Jij σ

(1)
i σ

(1)
j

∑
{σ (1)} e

β√
N

∑
1 � i<j �N Jij σ

(1)
i σ

(1)
j




2

, (2.27)

where we have factored the partition function (2.14) in order to write the
denominator of this last expression. Therefore (2.27) is, up to a factor, the
ALR order parameter (see(6) and Appendix B).

3. A SELF-AVERAGING VERSION OF THE ALR ORDER PARAMETER

If we take the equilibrium theory of the SK spin glass seriously, the
order parameter should satisfy the self-averaging property, which means
that the experiment performed on any one sample must be typical (see,
however,(15) and(16)).

Since f
′
− (λ, {J }) has, by (2.20), almost everywhere the same value, we

propose the following definition for our parameter q:
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Definition 3.1. We define a self-averaging version of the ALR order
parameter for the Sherrington-Kirkpatrick Hamiltonian (2.12) by

q =f
′
− (0, {J }) . (3.28)

It turns out that q has two nice properties expected of an order parame-
ter, although its role as such is debatable (see the introduction). Another
clue to its meaning is discussed in section IV.

Proposition 3.2. For β >1,

q >c

(
1−O

(
1
β

))
, (3.29)

where c is a constant.

Proof. Since fN (λ, {J }) is a concave function, it follows from (2.21)
that

fN (0, {J })−fN (h, {J })
−h

�f
′
N (0, {J }) (3.30)

for any h<0. Taking now the lim supN→∞ of the left-hand side of (3.30),
and taking into account that the limit of the left-hand side of (3.30) as
N →∞ exists, we find that

f (0, {J })−f (h, {J })
−h

� lim sup
N→N

f
′
N (0, {J }) ,∀h<0 (3.31)

Since the right-hand side of (3.31) is independent of h < 0, we may take
the limit as h→0− of the left-hand side and arrive at

f
′
− (0, {J }) � lim sup

N→∞
f

′
N (0, {J }) . (3.32)

It follows from(6) that the following ALR inequality holds:

D − lim inf
N→∞

f
′
N(0, {J })� c

(
1−O

(
1
β

))
, (3.33)

where D denotes the limit in distribution. Thus, given ε >0,

lim inf
N→∞, N �N0(ε)

f
′
N(0, {J })� c

(
1−O

(
1
β

))
(3.34)
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with probability larger than 1− ε. A proof of (3.33) is given in Appendix
B. It then follows from (3.32) and (3.34) that

f
′
− (0, {J }) � c

(
1−O

(
1
β

))

holds almost everywhere because f
′
− (0, {J }) has the same value almost

everywhere, thus proving (3.29).

For β,λ sufficiently small, it follows (see the second reference in(17))
that f (λ, {J }) is differentiable in its coupling parameters (β, λ, . . . ), and
therefore there exist β0 > 0, λ0 > 0 such that for β ∈ [−β0, β0] and
λ∈ [−λ0, λ0], f (λ, {J }) is differentiable in λ, which is equivalent to

f
′
+ (λ, {J })=f

′
− (λ, {J }) . (3.35)

By (2.25), this equality implies that at λ=0 we have, for β sufficiently
small,

q = lim
N→∞

f
′
N (0, {J })

and thus, again by,(6)

q =0. (3.36)

We have thus

Proposition 3.3. Equation (3.36) holds for β ∈ [−β0, β0].

Note that only differentiability was required above: analyticity is more
delicate due to the existence of Griffiths singularities.(17)

4. AN ALTERNATIVE APPROACH TO THE PARAMETER q

We now show that q is almost

q ≡ lim
λ→0−

lim
N→∞

f
′
N (λ, {J }) . (4.37)

It is possible to prove (4.37) only with several provisos. Firstly, the first
limit (N → ∞) is only along a special subsequence, and the second one
(λ → 0−) only along a sequence {sn}∞n=1 of values for λ with sn → 0− as
n→∞. We then have
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Proposition 4.1. For any sequence {sn}∞n=1 with sn →0− as n→∞,
there exists a subsequence {Ni}∞i=1 of N =1,2,3, ... such that

lim
n→∞ lim

i→∞
f

′
Ni

(sn, {J })=q. (4.38)

Remark 4.2. Of course, if the limit

lim
N→∞

f
′
N (λ, {J })

exists for all λ in a neighborhood of zero, we come back to (4.37).

Proof. Since f
′
N (sn, {J }) is uniformly bounded in N , there exists, by

the diagonal method, a subsequence {Ni}∞i=1 of N =1,2,3, ... such that

lim
i→∞

f
′
Ni

(sn, {J })

exists for each n=1,2,3, .... By (2.25), we have

lim
i→∞

f
′
Ni

(sn, {J }) �f
′
− (sn, {J })

for n=1,2,3, . . . , and therefore

lim sup
n→∞

lim
i→∞

f
′
Ni

(sn, {J }) �f
′
− (0, {J }) . (4.39)

By definition,

fNi (λ, {J }) = inf
ρ

(−T S(ρ)+ρ(H))

= −T S(ρ(λ))+ρ(λ) (H (λ, {J })) , (4.40)

where

ρ(λ) (HN(λ, {J }))
= 1

ZN(λ, {J }) Tr
(
HN(λ, {J }) · e−β(HN(λ,{J }))

)
. (4.41)

By the variational principle,(12) we have

fNi (0, {J }) = inf
ρ

(−T S(ρ)+ρ(HNi
(0, {J })))

� −T S(ρ(λ))+ρ(λ)
(
HNi (0, {J })) . (4.42)
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Since

ρ(λ) (H(0, {J }))−ρ(λ) (H(λ, {J }))
−λ

=f
′
Ni

(λ, {J }) (4.43)

for λ<0, it follows (4.43), (4.40) and (4.42) that

fNi (0, {J })−fNi (λ, {J })
−λ

�f
′
Ni

(λ, {J }) . (4.44)

Considering (4.44) with λ= sn and taking the limit i →∞

lim
i→∞

f
′
Ni

(sn, {J }) � f (0, {J })−f (sn, {J })
−sn

. (4.45)

Taking now lim infn→∞ of (4.45), we obtain

lim inf
n→∞ lim

i→∞
f

′
Ni

(sn, {J }) �f
′
− (0, {J }) . (4.46)

By (4.39) and (4.46) the proposition follows.

Remark 4.3. By(9) it seems clear that it is impossible to make sense
of the notion of infinite-volume Gibbs states for the SK model. The infi-
nite volume states of random-sites mean-field models, as treated in(18,19)

can be well-defined objects.

Remark 4.4. Since the term

2λ

N −1

∑
1 � i<j �N

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j

in (2.12) represents a (special) coupling between replicas, it is not clear
that the limits in (4.37) commute. It should be interesting to investigate
this question, which might be related to the replica symmetry breaking. If
the limits in (4.37) commute, the result obtained would be the average of
just the overlap q12 (in the notation of Appendix A). Since its self-averag-
ing nature says nothing about the average of other overlaps which occur
in the Parisi theory(7,8), it is – in this case – impossible that our q is an
order parameter, in the sense that the quantity we have introduced does
not provide sufficient information to express the free energy in. However,
it distinguishes between the paramagnetic high-temperature phase and the
ordered, low-temperature spin-glass phase. In this sense, it only plays part
of the role order parameters of mean-field models usually play.
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APPENDIX A. THE THERMODYNAMIC LIMIT OF THE FREE ENERGY

In,(1) Guerra and Toninelli proved the existence of the thermodynamic
limit of the free energy for the SK model and a number of closely related
models, among which is the multi-replica SK model. In this appendix, we
state a special case of their results, which is applicable to our model (2.12):
The multi replica SK model, with coupled replicas. Let

HN

(
σ (1), ..., σ (n), {J }

)
= − 1√

N

∑
1 � i<j �N

Jij

(
σ

(1)
i σ

(1)
j +· · ·+σ

(n)
i σ

(n)
j

)
+Ng ({qab}) , (A.1)

where

qab = 1
N

N∑
i=1

σ
(a)
i σ

(b)
i (A.2)

are the overlaps, a, b=1,2, . . . , n, and g is a smooth function of class C1.
Then (Theorem 1 of (6)):

Theorem A.1. Under the above conditions the thermodynamic limit
of the quenched free energy exists:

lim
N→∞

− 1
Nβ

E (ln ZN(β))=f (β). (A.3)

Moreover, the free energy converges almost surely with respect to the dis-
order realization:

lim
N→∞

− 1
Nβ

(ln ZN(β))=f (β), J −almost surely, (A.4)

and there exists L<∞ such that the disorder fluctuations satisfy the
bound

P

(∣∣∣∣− 1
Nβ

ln ZN(β)−fN(β)

∣∣∣∣ �u

)
�2 exp

(
−Nu2

2L

)
. (A.5)
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We see that (2.12) is of the form (A.1), (A.2), with g(x)=x2 up to an
unimportant constant term.

APPENDIX B. THE ALR INEQUALITY

The inequality of Aizenman-Lebowitz-Ruelle was given in(6) without
detailed proof. In this appendix we provide a short proof since it plays a
major role in our considerations.

We first prove the following preliminary result based on the idea of
setting the interaction Jxy equal to zero. Let

H({J })=H0 − Jxy√
N

σxσy, (B.1)

where H0({J }) is a Hamiltonian obtained from original Hamiltonian of
the SK model by removing the interaction Jxyσxσy corresponding to the
particular pair of spins at sites x and y.

Lemma B.1. If we define the correlation

〈σxσy〉0 =
∑

{σ } σxσye
−βH0∑

{σ } e−βH0
. (B.2)

then we have

〈σxσy〉=〈σxσy〉0 + βJxy√
N

(
1−〈σxσy〉2

0

)
+O

(
β2J 2

xy

N

)
. (B.3)

Proof. Note that the Hamiltonian (B.1) can be written as

H0({J })=h1σx +h2σy +h,

where

h1 =
∑

1 � i �N
i 
=y

Jixσi, h2 =
∑

1 � i �N
i 
=x

Jiyσi and h=
∑

1 � i,j �N
i 
=x and j 
=y

Jij σiσj .
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It follows from the definition (1.11) that

〈σxσy〉 = 1
ZN({J })

′∑
{σ }

{
e

β√
N

(h+Jxy)
(

e
β√
N

(h1+h2) + e
− β√

N
(h1+h2)

)

−e
β√
N

(h−Jxy)
(

e
β√
N

(h1−h2) + e
− β√

N
(h1−h2)

)}
,

where the prime on the summation sign indicates that we have carried out
the summation on the possible values σ =±1 of the spins at x and y. Fac-
toring out the exponential term containing Jxy , we obtain

〈σxσy〉 = e
βJxy√

N

ZN({J })

′∑
{σ }

e
βh√
N

(
e

β√
N

(h1+h2) + e
− β√

N
(h1+h2)

)

− e
−βJxy√

N

ZN({J })

′∑
{σ }

e
βh√
N

(
e

β√
N

(h1−h2) + e
− β√

N
(h1−h2)

)
.

For fixed Jxy and β, and N sufficiently large, first order expansion of
the exponential factors yields (from now on and up to (B.7), a reminder
term O(β2J 2

xy/N) is omitted):

〈σxσy〉 =
1+ βJxy√

N

ZN({J })

′∑
{σ }

e
βh√
N

(
e

β√
N

(h1+h2) + e
− β√

N
(h1+h2)

)

−
1− βJxy√

N

ZN({J })

′∑
{σ }

e
βh√
N

(
e

β√
N

(h1−h2) + e
− β√

N
(h1−h2)

)
.

This can be now be rewritten as

〈σxσy〉= 1
ZN({J })

(
A+ βJxy√

N
B

)
, (B.4)

where

A=
′∑

{σ }
e

βh√
N

(
e

β√
N

(h1+h2) + e
− β√

N
(h1+h2) − e

β√
N

(h1−h2) − e
− β√

N
(h1−h2)

)
,
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and

B =
′∑

{σ }
e

βh√
N

(
e

β√
N

(h1+h2) + e
− β√

N
(h1−h2) + e

β√
N

(h1−h2) + e
− β√

N
(h1+h2)

)
.

We now rewrite the partition function ZN({J }) itself in a similar fashion.
A repetition of the arguments leading to (B.4) yields

ZN({J })=B + βJxy√
N

A. (B.5)

Substituting (B.5) back into the expression (B.4) we obtain

〈σxσy〉=
A+ βJxy√

N
B

B + βJxy√
N

A
(B.6)

We now put the correlation 〈σxσy〉0 as in (B.6). This is done by simply set-
ting Jxy =0 in the expression (B.6), thus obtaining

〈σxσy〉0 = A

B
. (B.7)

This fact allows us to write (B.6) as

〈σxσy〉 =
(

A

B
+ βJxy√

N

)(
1− βJxy√

N
· A

B

)

= A

B
+ βJxy√

N

(
1−

(
A

B

)2
)

+O
(

β2J 2
xy

N

)
, (B.8)

which, by (B.7), is (B.3). This completes the proof of the lemma.

We are now ready to prove the following result.

Theorem B.2. [ALR equality] For each N and β,

d

dβ

1
N

〈〈ln ZN 〉〉= 1
2
βJ 2 (1−〈〈qN(βJ )〉〉)+RN, (B.9)

where RN is a remainder term that vanishes as N →∞, satisfying

RN � constant
β2
√

N
. (B.10)
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Proof. We have

d

dβ

1
N

ln ZN = 1
N

∑
1 � i<j �N

Jij√
N

〈σiσj 〉, (B.11)

where 〈σiσj 〉 is defined in (1.11). By substituting the relation (B.3) into the
expression (B.11), we obtain

d

dβ

1
N

ln ZN = 1
N3/2

∑
1 � i<j �N

Jij 〈σiσj 〉0

+ 1
N2

∑
1 � i<j �N

βJ 2
ij

(
1−〈σiσj 〉2

0

)
+ R̃N (B.12)

with a remainder R̃N =O
(
β2/

√
N
)

. We now take the average value of the
above expression. The first term on the right-hand side is zero. In order to
calculate the average value of the second term on the right-hand side we
use (B.3) to write

〈σxσy〉2 = 〈σxσy〉2
0 + 2βJij√

N
〈σxσy〉0 ·

(
1−〈σxσy〉2

0

)
+O

(
β2J 2

xy

N

)
.

and, on taking the average value with respect to the Jij ’s, we obtain sim-
ply

〈〈〈σxσy〉2〉〉=〈〈〈σxσy〉2
0〉〉+O

(
β2J 2

xy

N

)
. (B.13)

By combining (B.12) and (B.13) the theorem follows.

By using Lemma B.1, (3.34), which we called the ALR inequality in
the main text, follows in a straightforward fashion, as in.(6)
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Fapesp – Fundação de amparo à pesquisa do Estado de São Paulo
– for financial support under grant 01/08485-6. O.B. permanent address is:
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